![\sqrt[]{(27x^6)/(21x)}=\sqrt[]{(27x^5)/(21)}](https://img.qammunity.org/2023/formulas/mathematics/college/a5mq7dixbujtz4b1t0yucwi45r8q7mmtdd.png)
Substitute x=1 in the above expression.
![\begin{gathered} \sqrt[]{(27*1^5)/(21)}=\sqrt[]{(27*1)/(21)} \\ =\sqrt[]{(27)/(21)} \\ =\sqrt[]{(9)/(7)} \\ \approx1.134 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9bou0r6ift1jck95o9p2vznwgfibbki52z.png)
Given:
![3x^2\sqrt[]{(x)/(7)}](https://img.qammunity.org/2023/formulas/mathematics/college/vkjeyjh6z19ccn89db1f9gx31x2ro9i75y.png)
Substitute x=1 in the above expression.
![\begin{gathered} 3*1^2*\sqrt[]{(1)/(7)}=3*1*\sqrt[]{(1)/(7)} \\ =3*\sqrt[]{(1)/(7)} \\ \approx3*0.378 \\ \approx1.134 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3gfvzubbe00dbto0w2bsx1t253lbbz94j3.png)
The value of both the expression are aproximately equals to 1.134 .Thus, the corect option is the first one, 'The value of x=1 yeild approximately 1.134 for each expression, so the '