Write out the formula of Probability
![\text{Probability}=\frac{Number\text{ of favourable outcomes}}{Total\text{ number of outcomes}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2ym5t422myt7b32aurlibdzcozxzb2kkq.png)
Let's get the total number of marbles= 2+3+1+4= 10marbles.
Let A represents blue marbles, A= 4.
Let B represents black marbles, B= 3
Let's get the probability of the blue marble
![P(A)=(4)/(10)=(2)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/henz76j9rho2rgcc8qdtpndqrukeofduwt.png)
Let's get the probability of black marble
![P(B)=(3)/(10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tnr9m9uwkdx97z2gs71w3mx9ijlovbhlqd.png)
Let us now get the probability of blue marble and black marble
![\begin{gathered} P(A)\text{.P(B)}=(2)/(5)*(3)/(10)=(6)/(50)=(3)/(25) \\ P(A)\text{.P(B)}=(3)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/itnszi5n823frfakej885mlqs4uib2l6nv.png)
Hence the number of times he will draw a blue marble followed by a black marble is 3/25.