SOLUTION
From the diagram below
From the diagram, we have the hypotenuse of triagle ABD as 1 + 1 = 2cm
So using SOHCAHTOA, we have
![\begin{gathered} sin\varnothing=(oppsite)/(hypotenuse) \\ sin\varnothing=(x)/(2) \\ x=2sin\varnothing \\ Also\text{ } \\ cos\varnothing=(adjacent)/(hypotenuse) \\ cos\varnothing=(y)/(2) \\ y=2cos\varnothing \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t3ostzufk05elwom24rguzs2a4ur41j6c9.png)
hence the area of the inscribed rectangle becomes
![\begin{gathered} Area=x* y \\ Area=(2sin\varnothing)(2cos\varnothing) \\ =4sin\varnothing cos\varnothing \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uslc7ujqeauigwjq2pzmjkjcrtr6e4vdq0.png)
Hence the answer is
![Area=4sin\varnothing cos\varnothing](https://img.qammunity.org/2023/formulas/mathematics/college/mm8jni5gffdb8ak4zjs7e9n8hk8we2wtlo.png)
(b) To get the maximum area, we find the derivative of the function above, we have
![\begin{gathered} A=4sin\varnothing cos\varnothing \\ simplify,\text{ we have } \\ 2sin(2\varnothing) \\ =(d)/(d\varnothing)(2sin(2\varnothing)) \\ take\text{ the constant out } \\ =2(d)/(d\varnothing)(sin(2\varnothing)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6dvt48mk5dafni8mvwrunaxzfyzjv6xxyz.png)
Apply the chain rule
![\begin{gathered} cos(2\varnothing)(d)/(d\varnothing)(2\varnothing) \\ =(d)/(d\varnothing)(2\varnothing)=2 \\ =2cos(2\varnothing)*2 \\ =4cos(2\varnothing) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l4ffzybw1lg1l0om1ha314i3jyw5q021r1.png)
At maximum the derivative is 0, equating to zero, we have
![\begin{gathered} 4cos(2\varnothing)=0 \\ \varnothing=45\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ip7it8i2wpweo52qg7rn1gx74ot4eyml79.png)
So, we put this 45 into the expression for area, we have
![\begin{gathered} Area=4sin\varnothing cos\varnothing \\ =4sin45\degree cos45\degree \\ =4*(√(2))/(2)*(√(2))/(2) \\ =(4*2)/(4) \\ =2units^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7aevxosyjhx55hawgflq2rgzoen7z4ix50.png)
Hence the answer is 2 square units