We are given the following trigonometric ratio
![\csc \theta=\frac{\sqrt[]{11}}{3}](https://img.qammunity.org/2023/formulas/mathematics/college/ye4bo384pzo396tzjzycawnn851lm7ve5s.png)
We are asked to find cosθ
Recall that cscθ and sinθ are related as
![\sin \theta=(1)/(\csc\theta)=\frac{1}{\frac{\sqrt[]{11}}{3}}=\frac{3}{\sqrt[]{11}}](https://img.qammunity.org/2023/formulas/mathematics/college/vqqbrzu2wlurnvimlgc6ed8m2cts9mp631.png)
Also, recall that sinθ is equal to
![\sin \theta=(opposite)/(hypotenuse)=\frac{3}{\sqrt[]{11}}](https://img.qammunity.org/2023/formulas/mathematics/college/jbd7zinvvq6mul6ooonwvoy3v7xj2ftt2j.png)
This means that
Opposite = 3
Hypotenuse = √11
Let us find the adjacent side using the Pythagorean theorem
![\begin{gathered} (adjacent)^2+(opposite)^2=(hypotenuse)^2 \\ (adjacent)^2+(3)^2=(\sqrt[]{11})^2 \\ (adjacent)^2=(\sqrt[]{11})^2-\mleft(3\mright)^2 \\ (adjacent)^2=11-9 \\ (adjacent)^2=2 \\ √((adjacent)^2)=√(2) \\ adjacent=\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uio9ky2nh5e1nuqiuj53yru8l92eelo3xa.png)
So, the adjacent side is √2
Finally, cosθ is given by
![\cos \theta=(adjacent)/(hypotenuse)=\frac{\sqrt[]{2}}{\sqrt[]{11}}*\frac{\sqrt[]{11}}{\sqrt[]{11}}=\frac{\sqrt[]{2}\cdot\sqrt[]{11}}{11}=\frac{\sqrt[]{22}}{11}](https://img.qammunity.org/2023/formulas/mathematics/college/tfx64708tu9fh0f29uxhqt0uhpafeh59jl.png)
Therefore, cosθ = √22/11
![\cos \theta=\frac{\sqrt[]{22}}{11}](https://img.qammunity.org/2023/formulas/mathematics/college/mxu1hpgv5nc4mnphbmkzecvr47p3wl9k0y.png)