To find what is P + Q - R
From the equation given
![\text{ p = 3x}^2+xy-5y^2](https://img.qammunity.org/2023/formulas/mathematics/college/re5x3mz9cys6dbdk296om5of8x7qr8ex6t.png)
![\Q=2x^{2\text{ }}-xy+3y^2](https://img.qammunity.org/2023/formulas/mathematics/college/rc7wa6bjmq4g5boriokbevi9mul2rqk1qj.png)
![\R=-6x^2+4xy-7y^2](https://img.qammunity.org/2023/formulas/mathematics/college/ns7mek1yf0692bu2zchw4na297zt3ohbky.png)
![\P+Q-R=3x^2+xy-5y^2+(2x^2-xy+3y^2)-(-6x^2+4xy-7y^2)](https://img.qammunity.org/2023/formulas/mathematics/college/1pyhq6y2vd9tmjezod7io0frkpbgxtapfk.png)
Now we will simplify the equation by first opening the parentheses
Values of Q will remain the same even after opening the parenthesis because it's addition but for the values of R, the signs will be affected because it's a subtraction.
That is :
![3x^2+xy-5y^2+2x^2-xy+3y^2+6x^2-4xy+7y^2](https://img.qammunity.org/2023/formulas/mathematics/college/h1je590by2s6knt7yj9arzmgiujdk32bjc.png)
So the next is to rearrange them according to their powers
![3x^2+2x^2+6x^2+xy-xy-4xy-5y^2+3y^2+7y^2](https://img.qammunity.org/2023/formulas/mathematics/college/4k5e44hpo4me38uuelmazog95ngnv6r16c.png)
Then we will add or subtract variables that are the same accordingly(depending on their signs)
![11x^2-4xy+5y^2](https://img.qammunity.org/2023/formulas/mathematics/college/20sbmf7y3vpd9xlg089hjxyjan47v184so.png)
Therefore
![\P+Q-R=11x^2-4xy+5y^2](https://img.qammunity.org/2023/formulas/mathematics/college/i4tnifnf9lnn4xpdkgr3v7t22lmmv14m53.png)