The equation for the amount of money A in an account that earns interest compounded continuously, is:
![A=A_0e^(rt)](https://img.qammunity.org/2023/formulas/mathematics/college/2pswcu1abxaffku3e3t1tbea4ylqccz3b0.png)
Where A_0 represents the initial deposit, r is the interest rate and t represents time.
If the annual interest is 3%, then the interest rate r is:
![r=(3)/(100)=0.03](https://img.qammunity.org/2023/formulas/mathematics/college/f7zgc0kf0d6h1aevlj3hxlo1bns781a861.png)
If the amount of money triples after a time t, then the savings account will be worth $3000 at that time. Substitute A=3000, A_0=1000 and r=0.03:
![3000=1000\cdot e^(0.03t)](https://img.qammunity.org/2023/formulas/mathematics/college/yuyikui9jluomb94xvls19e1zfrz61gp0g.png)
Isolate t to find the amount of time needed for the investment to triple:
![\begin{gathered} \Rightarrow(3000)/(1000)=e^(0.03t) \\ \Rightarrow3=e^(0.03t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cwbkz627mmyrxvtfzrwjmpe8u5vz3hinjd.png)
Take the natural logarithm to both sides of the equation:
![\ln (3)=\ln (e^(0.03t))](https://img.qammunity.org/2023/formulas/mathematics/college/o92g25hd14jtp56ijh6ijs0g1rdfme3elv.png)
The natural logarithm of e^0.03t is equal to 0.03t. Then:
![\begin{gathered} 0.03t=\ln (3) \\ \Rightarrow t=(\ln (3))/(0.03) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6ylmh0r5norkkiw3fmiov6iwmihhx3pybo.png)
Use a calculator to evaluate the expression:
![\begin{gathered} \Rightarrow t=(1.0986\ldots)/(0.03) \\ \Rightarrow t=36.62\ldots \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fzpolok2a3bwys8g3kkcoyrfabq1ofh1vs.png)
Therefore, to the nearest hundredth, the amount of time needed for the investment to triple, is:
![36.62\text{ years}](https://img.qammunity.org/2023/formulas/mathematics/college/c5agebpoychjfvnd7b0ckr92igzp5pvrg6.png)