As given by the question
There are given that the equation:
![5x-2y=6](https://img.qammunity.org/2023/formulas/mathematics/college/5az4acb9mk47131rftam9ty8e25jofzja8.png)
Now,
To find the slope and y-intercept, first we need to rewrite the given equation into the standard form, y = mx + b
Where, m is slope and b is y-intercept.
Then,
From the given equation:
![5x-2y=6](https://img.qammunity.org/2023/formulas/mathematics/college/5az4acb9mk47131rftam9ty8e25jofzja8.png)
Subtract 5x from both sides of the equation
So,
![\begin{gathered} 5x-2y=6 \\ 5x-2y-5x=6-5x \\ -2y=6-5x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/21xhfjq11rdl51f2gfl16h3zm2kqpprt8k.png)
Then,
Divide by -2 on both sides of the equation:
So,
![\begin{gathered} -2y=6-5x \\ (-2y)/(-2)=(6)/(-2)-(5x)/(-2) \\ y=-3+(5)/(2)x \\ y=(5)/(2)x-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dhncd4756fziep5ebp6l6f9icmhiokmzbv.png)
Then,
After compare with standard equation, y = mx + b
The value of slope and the y-intercept is shown below:
![\begin{gathered} \text{slope}=(5)/(2) \\ y-\text{intercept}=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m7d2i5uab0qinxloob68ntge00xsk05lg2.png)