Given that the width of the rectangular piccture is:
![w=(1)/(2)l](https://img.qammunity.org/2023/formulas/mathematics/college/3njqbe6x7z8sujy8qsn9q5qg9elkhz6wxa.png)
Where "l" is the length of the picture.
You know that the perimeter is:
![P=72\text{ }in](https://img.qammunity.org/2023/formulas/mathematics/college/4u2cwyzgtf861gpkm0h4y1hckr89gflpda.png)
The formula for calculating the perimeter of a rectangle is:
![P=2l+2w](https://img.qammunity.org/2023/formulas/mathematics/college/kglmgz1k7721scmpluhiwkuwdz056pgdjw.png)
Where "l" is the length and "w" is the width.
Therefore, you can substitute the perimeter and the width into the formula, in order to find "l":
![72=2l+2((1)/(2)l)](https://img.qammunity.org/2023/formulas/mathematics/college/eu1exgze3f2lznr1irg7jbebu6o8bc081l.png)
Now you can solve for "l":
![72=2l+(2)/(2)l](https://img.qammunity.org/2023/formulas/mathematics/college/e91lsllpo13968uvdu473v9d1d7gzgvnr3.png)
![72=2l+l](https://img.qammunity.org/2023/formulas/mathematics/college/wpmbtiy7hupa4kob6i50kiugzvabppkr5d.png)
![72=3l](https://img.qammunity.org/2023/formulas/mathematics/college/1f3opnyigrilxq4pghh6w370c4v3x6gctg.png)
![(72)/(3)=l](https://img.qammunity.org/2023/formulas/mathematics/college/rzvd62994992thd5uut28479fgixap5jo9.png)
![l=24\text{ }in](https://img.qammunity.org/2023/formulas/mathematics/college/eprzqhh8a7msedn8epfimb75jneqhhmbee.png)
Hence, the answer is:
![l=24\text{ }in](https://img.qammunity.org/2023/formulas/mathematics/college/eprzqhh8a7msedn8epfimb75jneqhhmbee.png)