ANSWER:
2 non-real solutions and are as follows:
![\begin{gathered} x_1=-(2)/(7)+\frac{\sqrt[]{10}}{7}i \\ x_2=-(2)/(7)-\frac{\sqrt[]{10}}{7}i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1lr7u5zxh57j6t0mwy3zmr1h0n5h9u2az0.png)
Explanation:
The first thing we must do is convert the equation to the following form
![\begin{gathered} Ax^2+Bx+C=0 \\ \text{ We have the following equation:} \\ 7y^2+2=-4y \\ \text{now, we convert} \\ 7y^2+4y+2=0 \\ \text{therefore:} \\ a=7 \\ b=4 \\ c=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b6to4fmfdfblqjeepsw2cf2m2hb79lbkax.png)
Now we calculate the discriminant
![\begin{gathered} d=b^2-4ac \\ \text{replacing} \\ d=4^2-4\cdot7\cdot2 \\ d=-40 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yvpl9ui2j1b5glr84418ocbdy5jpezjjsu.png)
When the value of the discriminant is less than 0, the number of solutions is 2 and both are imaginary.
Now we calculate the solutions by means of the general equation, like this:
![\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{replacing} \\ x_1=\frac{-4+\sqrt[]{4^2-4\cdot7\cdot2}}{2\cdot7}=-(2)/(7)+\frac{\sqrt[]{10}}{7}i \\ x_2=\frac{-4-\sqrt[]{4^2-4\cdot7\cdot2}}{2\cdot7}=-(2)/(7)-\frac{\sqrt[]{10}}{7}i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sb388go09l77lsejdkljvig4dfmpekl7nr.png)