Since we are dealing with a right triangle, we can use the following two trigonometric identities
![\sin \theta=(O)/(H),\cos \theta=(A)/(H)](https://img.qammunity.org/2023/formulas/mathematics/college/d86ex4af2pcwwlse8ljiro974u05afr4vp.png)
Where theta is an inner angle of the right triangle, A and O are the adjacent and opposite sides to theta, and H is the hypotenuse.
In our case,
![\sin (30dgr)=\frac{x}{22\sqrt[]{3}},\cos (30dgr)=\frac{y}{22\sqrt[]{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/e723qk6buhz452atjmborlwl5izizjdx8c.png)
Thus,
![\begin{gathered} \Rightarrow x=22\sqrt[]{3}\sin (30dgr),y=22\sqrt[]{3}\cos (30\text{dgr)} \\ \Rightarrow x=\frac{22\sqrt[]{3}}{2}=11\sqrt[]{3},y=22\sqrt[]{3}(\frac{\sqrt[]{3}}{2})=11\cdot3=33 \\ \Rightarrow x=11\sqrt[]{3},y=33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/opwof39poabhvdmbpryy7yzm29ijeja0fl.png)
Hence, the answers are x=11sqrt(3) and y=33