120k views
4 votes
ADA. 5B. 5.1C. 5.42D. 6.231213BFind the length of AD. Round the answer to the nearest hundredth.

ADA. 5B. 5.1C. 5.42D. 6.231213BFind the length of AD. Round the answer to the nearest-example-1
User PattyOK
by
3.9k points

1 Answer

3 votes
Answer:
AD\text{ = 5.42 \lparen option C\rparen}

Step-by-step explanation:

Given:

DC = 13, BC = 12

To find:

the value of AD

To determine AD, we will apply the geometric mean formula:


\begin{gathered} (leg)/(part)\text{ = }(hypotenuse)/(leg) \\ \\ We\text{ have 2 legs, for the part where there is AD} \\ AD\text{ = leg} \\ hypotenuse\text{ = AC} \\ part\text{ = AB} \\ The\text{ length of hypotenuse is unknown as BC was not given} \end{gathered}
\begin{gathered} We\text{ will calculate the 2nd leg to get the hypotenuse:} \\ 2nd\text{ }leg\text{ = DC = 13} \\ hypotenuse\text{ = AC } \\ AC\text{ = AB}+\text{ BC} \\ AC=\text{ AB + 12} \\ part\text{ for the 2nd leg = BC}=\text{ 12} \\ \\ Using\text{ the formula above:} \\ \frac{2nd\text{ leg}}{part\text{ for 2nd leg}}\text{ = }\frac{hyp}{2nd\text{ leg}} \\ \\ (13)/(12)\text{ = }\frac{AB\text{ + 12}}{13} \\ \\ 13(13)\text{ = 12\lparen AB + 12\rparen} \\ 169\text{ = 12AB + 144} \end{gathered}
\begin{gathered} 169\text{ - 144 = 12AB} \\ 25\text{ = 12AB} \\ AB=\text{ 25/12} \\ AB=\text{ 2.0833} \\ \\ AC\text{ = AB +}BC\text{ = 2.0833 + 12 = 14.0833} \\ hyp\text{ = AC}=\text{ 14.0833} \end{gathered}

We can find AD since the hypotenuse is known using the formula:


\begin{gathered} (AD)/(AB)\text{ = }(AC)/(AD) \\ \\ (AD)/(2.0833)\text{ = }(14.0833)/(AD) \\ \\ AD^2\text{ = 2.0833}*14.0833 \\ \\ AD^2=\text{ 29.3397} \end{gathered}
\begin{gathered} square\text{ root both sides:} \\ AD\text{ = }√(29.3397)\text{ = 5.4166} \\ \\ AD\text{ = 5.42 \lparen nearest hundredth\rparen \lparen option C\rparen} \end{gathered}

User Xmkevinchen
by
4.2k points