Step-by-step explanation
The vertical asymptote
![\begin{gathered} \mathrm{For\:rational\:functions,\:the\:vertical\:asymptotes\:are\:the\:undefined\:points,\:} \\ \mathrm{also\:known\:as\:the\:zeros\:of\:the\:denominator,\:of\:the\:simplified\:function.} \end{gathered}]()
for the given function

According to the formula
The denominator will be undefined when
![\begin{gathered} x^4-81=0 \\ x=\sqrt[4]{81} \\ x=3,\text{ x=-3} \\ x= \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/54v0oee3l8bk7duqu924ialc2s8ekn5rn6.png)
The vertical asymptotes are

For the horizontal function

Since the denominator degree is higher than the numerator
Then
The horizontal asymptote is

For the oblique asymptote
Since the degree of the numerator is not one degree greater than the denominator, then there are no slant asymptotes.
There are no oblique asymptote