110k views
3 votes
Define if possible f (a) such that the resulting function either continues in x = a

Define if possible f (a) such that the resulting function either continues in x = a-example-1
User NewestUser
by
8.0k points

1 Answer

7 votes

\begin{gathered} (a)\text{ Solve for }f(x)=\begin{cases}3x+1\text{ if x<1} \\ 5x-1\text{ if x>1}\end{cases} \\ \text{Equate the two cases of }f(x),\text{ so that they will be continous} \\ 3x+1=5x-1 \\ 3x-5x=-1-1 \\ (-2x)/(-2)=(-2)/(-2) \\ \\ x=1 \\ \text{Plug in }x=1\text{ to both cases} \\ 3x+1\rightarrow3(1)+1\rightarrow4 \\ 5x-1\rightarrow5(1)-1\rightarrow4 \\ \\ \text{Therefore, }f(a)=4 \end{gathered}
\begin{gathered} (b)\text{ Solve for }f(x)=\begin{cases}x\text{ if }x<0 \\ -x\text{ if }x>0\end{cases} \\ \\ \text{Substituting }x=0\text{ for both cases would yield }f(a)=0 \end{gathered}

User Mol
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories