64.4k views
2 votes
Find the exact value of sin(tan^-1(-5/12))

User Irondsd
by
5.3k points

1 Answer

6 votes

we have the expression


sin\left(tan^(-1)\left(-5/12\right)\right)

Let

x ----> the measure of the given angle in degrees

we have that


\begin{gathered} tan(x)=-(5)/(12) \\ so \\ sin(tan^(-1)(-(5)/(12))=sinx \\ \end{gathered}

Remember the identity


\begin{gathered} tan^2x+1=sec^2x \\ substitute\text{ given value} \\ If\text{ the value of the tangent is negative the angle x lies on the II quadrant or IV quadrant} \\ (-(5)/(12))^2+1=sec^2x \\ sec^2x=(25)/(144)+1 \\ \\ sec^2x=(169)/(144) \\ \\ secx=\pm(13)/(12) \\ \\ cosx=\pm(12)/(13) \end{gathered}

Find out the value of sine of the angle x


\begin{gathered} sin^2x+cos^2x=1 \\ sin^2+((12)/(13))^2=1 \\ \\ sin^2x=1-(144)/(169) \\ sin^2x=(25)/(169) \\ \\ sinx=\pm(5)/(13) \end{gathered}

User Wolfgang Fahl
by
6.4k points