We want to find the following probability:
![P(X>10)](https://img.qammunity.org/2023/formulas/mathematics/college/6klms69124fgrzwomraox4cpmznug3v8xi.png)
where X is a normal random variable with mean 13.3 and standard deviation 1.1. To find this probability let's normalize the random variable; to do this we use the z-score given by:
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/h06hsre30elxbqnbdkqzw5pbp57988qa0r.png)
Then, in this case, we have:
![P(X>10)=P(z>(10-13.3)/(1.1))=P(z>-3)](https://img.qammunity.org/2023/formulas/mathematics/college/smwxyi2taqv82u5zgifdhnpttv35z8frk6.png)
Using the standard normal table, we have:
![P(X\gt10)=P(z\gt(10-13.3)\/1.1)=P(z\gt-3)=0.9987](https://img.qammunity.org/2023/formulas/mathematics/college/ug57d47gslacil95rnpkhj4qvue405ucru.png)
Therefore, the probability of purchasing an item with a lifespan greater than 10 years is 0.9987