Given:
D1 = 2 m
D2 = 4 m
Distance between object and lens = 1 m
Let's find where the image will appear relative to the second lens.
To find the distance, apply the formula:
![(1)/(v)-(1)/(u)=(1)/(f)](https://img.qammunity.org/2023/formulas/physics/college/13ok2q4ce0oclchhi8hoavtedhxa8ouv42.png)
Thus, we have:
![\begin{gathered} (1)/(1)+(1)/(u)=(1)/(2) \\ \\ (1)/(u)=(1)/(2)-(1)/(1) \\ \\ (1)/(u)=-(1)/(2) \\ \\ u=-2\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3hl7b5mr7lerccdfpze3ytgk7pc36f1gom.png)
Now, we have the equation:
![\begin{gathered} v_2=L-f \\ \\ v_2=4--2 \\ \\ v_2=4+2 \\ v_2=6\text{ m} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ocvz8388cewzxa3s21fsk1mftqfsdbfawb.png)
Now, let's use the Lens equation:
![\begin{gathered} (1)/(6)+(1)/(u_2)=(1)/(2) \\ \\ (1)/(u_2)=(1)/(2)-(1)/(6) \\ \\ (1)/(u_2)=(3-1)/(6)=(2)/(6) \\ \\ u_2=(6)/(2) \\ \\ u_2=3\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/1iqrlorbeyatimqntyo6vwoe4ed6xo8gbw.png)
Now, to find the image distance relative to the second lens, we have:
![-(u_2)/(v_2)=-\frac{3\text{ m}}{6\text{ m}}=-0.5\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/4g0wxdy5aiqxf86jzblyxjfvx1ay2coydr.png)
Therefore, the image will appear -0.5 m relative to the second lens.
ANSWER:
1.) -0.5 m