88.0k views
3 votes
For function a, find the general derivative as a new function by using the limit definition

For function a, find the general derivative as a new function by using the limit definition-example-1

1 Answer

4 votes

we have the function


f(x)=(x)/(3x+1)

Applying the limit definition


f^(\prime)(x)=\lim _(h\to0)(f(x+h)-f(x))/(h)

substitute given values


\lim _(h\to0)((x+h)/(3(x+h)+1)-(x)/(3x+1))/(h)
\lim _(h\to0)((x+h)/(3x+3h+1)-(x)/(3x+1))/(h)
\lim _(h\to0)\text{ }(((3x+1)(x+h)-(3x+3h+1)x)/((3x+3h+1)(3x+1)))/(h)

simplify


\lim _(h\to0)\text{ }(((3x^2+3xh+x+h)-(3x^2+3hx+x))/((9x^2+3x+9xh+3h+3x+1)))/(h)
\lim _(h\to0)\text{ }\frac{\frac{h^{}}{(9x^2+6x+9xh+3h+1)}}{h}
\lim _(h\to0)\text{ }(1)/((9x^2+6x+9xh+3h+1))=(1)/((9x^2+6x+1))

therefore


f^(\prime)(x)=(1)/((9x^2+6x+1))

simplify


f^(\prime)(x)=(1)/((3x+1)^2)

User CAustin
by
3.9k points