ANSWER
![3a^(3)bc+6a^(2)b^(3)c](https://img.qammunity.org/2023/formulas/mathematics/college/cdmnaqf59421mzvkp4jkhy1ytdz0jimmrv.png)
Step-by-step explanation
1. We want to expand the expression given:
![(abc)(3a^2+6ab^2)](https://img.qammunity.org/2023/formulas/mathematics/college/kk7bkgc8e6ljdyxtiifp3pkz6qgdgbfxih.png)
To do this, use the term in the first bracket to multiply each of the terms in the second bracket and then, simplify:
![(abc)(3a^2)+(abc)(6ab^2)](https://img.qammunity.org/2023/formulas/mathematics/college/u0o6n1fmfzwdd1wembkv0debf3vb4nwbsc.png)
Now, simplify by multiplying the common terms in each product:
![\begin{gathered} (3*(a^2*a)*b*c)+(6*(a*a)*(b^2*b)*c) \\ \\ 3a^3bc+6a^2b^3c \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h7wwxqctn4966seujwy37l8133zgllpdsx.png)
That is the answer.