Solution:
Given that the students used a paper filter cone to filter a liquid, the amount of liquid the cone will hold is evaluated to be the volume of the cone.
The volume of a cone is expressed as
![\begin{gathered} volume=(1)/(3)*\pi* r^2* h \\ where \\ r\Rightarrow radius\text{ of the cone} \\ h\Rightarrow height\text{ of the cone} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/blt5rbg7z4p8gpep02pfidm68o1indjk22.png)
Given that the diameter and height of the cone are
![\begin{gathered} diameter=11.5\text{ cm} \\ \Rightarrow radius=(diameter)/(2)=(11.5)/(2)cm \\ \\ height=13\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4rt3sjfll870ig9j8bliy0osg0an7mo59v.png)
By substitution, we have
![\begin{gathered} volume=(1)/(3)*\pi*((11.5)/(2))^2cm^2*13cm \\ =450.09859\text{ cm}^3 \\ \Rightarrow volume\approx450\text{ cm}^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yzd5fe3y32bdpwbcjy5ark4eo5hieh35jz.png)
Hence, when full, the cone holds
![450\text{ cm}^3\text{ of liquid}](https://img.qammunity.org/2023/formulas/mathematics/college/vnjczwenlvqy9mxqiaksrj1boppqhmrtuz.png)