Given the rectangle ABCD, you can identify that it is divided into two Right Triangles:
![\begin{gathered} \Delta ACD \\ \Delta ABD \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8gfuzlgact853tzicb81zghrgykxhdsy62.png)
• You can find the length of the rectangle by applying the following Trigonometric Function:
![\cos \alpha=(adjacent)/(hypotenuse)](https://img.qammunity.org/2023/formulas/mathematics/college/pr5zns6pi9tn66ut5flnlc3iqiptmk3c6d.png)
In this case, you can set up that:
![\begin{gathered} \alpha=30\degree \\ adjacent=CD=AB=l \\ hypotenuse=AD=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3opbtz4c42s1ode2jgfifix03u7sfxgvt1.png)
Then, substituting values and solving for "l", you get:
![\begin{gathered} \cos (30\text{\degree})=(l)/(9) \\ \\ 9\cdot\cos (30\text{\degree})=l \\ \\ l=(9)/(2)\sqrt[]{3}ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bn9i5thlogk138gia5g2dem2ltqrc08jt4.png)
• In order to find the width of the rectangle, you can use this Trigonometric Function:
![\sin \alpha=(opposite)/(hypotenuse)](https://img.qammunity.org/2023/formulas/mathematics/college/np687vjr2n6ghtkhhi6tl9n2e8aaavlj97.png)
In this case, you can say that:
![\begin{gathered} \alpha=30\degree \\ opposite=AC=BD=w \\ hypotenuse=AD=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mmvrinvl0f3vpc7bv69vorn1nharpaqlrz.png)
Therefore, substituting values and solving for "w", you get:
![\begin{gathered} \sin (30\degree)=(w)/(9) \\ \\ 9\cdot\sin (30\degree)=w \\ \\ w=(9)/(2)ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sq394kk180d8nnkj21n2qa05s8c9rlospm.png)
• Now you need to use the following formula for calculating the area of a rectangle:
![A=lw](https://img.qammunity.org/2023/formulas/mathematics/college/1uev9eqrb6cie54zfnubw0e3j6pmkw3cu2.png)
Where "l" is the length and "w" is the width.
Substituting the length and the width of the given rectangle into the formula and evaluating, you get:
![A=((9)/(2)\sqrt[]{3}ft)((9)/(2)ft)](https://img.qammunity.org/2023/formulas/mathematics/college/zqma1m3r1sqwgs048x3pe14rxj4oyw63ya.png)
![A\approx35.1ft^2](https://img.qammunity.org/2023/formulas/mathematics/college/t45ifq6jj9ttgbih730ypmdtwxutd0a35d.png)
Hence, the answer is: Option C.