A function f is increasing on an interval when
![f^(\prime)(x)>0\text{ for all x in that interval}](https://img.qammunity.org/2023/formulas/mathematics/college/czui5m30jyw8dgririx9jfrm8ytajpapy0.png)
Also,
![\begin{gathered} f^(\prime)(x)>0\text{ for all x in that interval if the tangents to the curve at any point on the curve } \\ \text{ in that interval makes an acute angle with the positive x-axis} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jtugxen6hrgj1s8r99xip9kjaxdvbymgz0.png)
From the image,
the function has a maximum point at x = -8,
therefore
![\begin{gathered} f^(\prime)(x)>0\text{ for x < -8} \\ \text{ That is } \\ f^(\prime)(x)>0\text{ on (-}\infty,-8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ltjayf1idz31zbtlisnbwz3sd34jso752p.png)
Also,
![\begin{gathered} f^(\prime)(x)>0,for \\ -30\text{ on (-3, -2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dxp11rz2my3ue2b0mppq2ej8qtfp543ggg.png)
Hence, the function is increasing on the intervals
![(-\infty,-8)\text{ and (-3, -2)}](https://img.qammunity.org/2023/formulas/mathematics/college/89csyunzxlorm50ekek0p3fs2sodtqhbtg.png)
b)
A function f is decreasing on an interval when
![f^(\prime)(x)<0\text{ for all x in that interval}](https://img.qammunity.org/2023/formulas/mathematics/college/9qpb79ke8dzztpzocsc9l8mtkhqjt3r5fu.png)
Also,
![\begin{gathered} f^(\prime)(x)<0\text{ for all x in that interval if the tangents to the curve at any point on the curve } \\ \text{in that interval makes an angle that is not acute with the positive x-axis} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d9ekhney6q81kagdu7qgo9fki8fhfsw6y6.png)
From the image,
the function has a maximum point at x = -8,
therefore
![\begin{gathered} f^(\prime)(x)<0\text{ for }-8Hence, the function is decreasing on the interval[tex](-8,-6)]()
(c)
A function f is constant on an interval when,
![f^(\prime)(x)=0\text{ for all x in that interval}](https://img.qammunity.org/2023/formulas/mathematics/college/s73om7demw42c6msuz54nznj0mvqel8mr5.png)
Also,
![f^(\prime)(x)=0\text{ for all x in that interval if the graph is parallel to the x-axis on that interval}](https://img.qammunity.org/2023/formulas/mathematics/college/u0uc6eassnt758l4owrdfs79gzyfwh8z1p.png)
From the image, we can see that the graph is parallel to the x-axis on the intervals
![-6-2}](https://img.qammunity.org/2023/formulas/mathematics/college/rbu8kr6fzy1927og48uxarefuyc473eclm.png)
Hence, the function is constant on the intervals
![(-6,-3)\text{ and (-2, }\infty)](https://img.qammunity.org/2023/formulas/mathematics/college/j05z9g22jt0m83qe3qz6q1sukgc9u1n719.png)