We are given the following trigonometric expression:
![(\sin \theta-\csc \theta)/(\cos \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/z8gq7ypvqvndo2pf2ul7og1yapezy3fskf.png)
We are asked to put this expression as a function of sines and cosines, t do this, let's remember the following relationship:
![\csc \theta=(1)/(\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/ubeff19zbv298o2h5akm0eeqytyryw3k49.png)
Now we replace this in the expression:
![(\sin \theta-(1)/(\sin\theta))/(\cos \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/m3tf4m0ls9on5lh02dk8xeqwf6kiac9gq8.png)
Now we do the operation in the numerator, like this:
![(((\sin\theta)(\sin\theta)-1)/(\sin\theta))/(\cos \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/bmcerd5ac7xslp2sfbh1jge5cn9qeq00zj.png)
We simplify the result:
![(\sin ^2\theta-1)/(\sin \theta\cos \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/nzkckbq16291d7260wkzd6ndw8lloupl9r.png)
now we use the following relationship:
![\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \cos ^2\theta=1-\sin ^2\theta \\ -\cos ^2\theta=\sin ^2\theta-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vwwwiwnp6alxdqz8j03d1ocktb0pyuv5ep.png)
replacing this in the expression
![(-\cos ^2\theta)/(\sin \theta\cos \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/c9jo9l2g8l1j2zicjk6nq1zx4nyryb7od7.png)
simplifying:
![-(\cos \theta)/(\sin \theta)](https://img.qammunity.org/2023/formulas/mathematics/college/w6xtl9fvala66j861dc7z95qocfgt1s7y6.png)
Since we are asked to put the expression as a function of sines and cosines we can't simplify any further, therefore the previous expression is the result.