Proof of a Right Angle Triangle.
Step 1: Determine the distance between EF, FG and GE.
Using the formula below;
![\text{Distance = }\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/js4fry7bgamdesxzsndp1if38xsjt0rzqj.png)

![\begin{gathered} |EF|=\sqrt[]{(7--2)^2+(-8-7)^2} \\ |EF|=\sqrt[]{9^2+(-15)^2}=\text{ }\sqrt[]{(81+225)} \\ |EF|=\sqrt[]{306}=17.493 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wbk695u93i844knfw1sepg6j8mivdgc0dv.png)

![\begin{gathered} |FG|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ |FG|=\sqrt[]{(-6-7)^2+(-3--8)^2}=\text{ }\sqrt[]{(-13)^2+(-3+8)^2} \\ |FG|=\sqrt[]{(169+5^2}=\sqrt[]{(169+25)} \\ |FG|=\sqrt[]{194}=13.928 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3xa6acp00qdhvsb1zdi75uz7cn41hrtn74.png)

![\begin{gathered} |GE|=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ |GE|=\sqrt[]{(-2--6)^2+(7--3)^2}=\text{ }\sqrt[]{(-2+6)^2+(7+3)^2} \\ |GE|=\sqrt[]{4^2+10^2}=\sqrt[]{16+100} \\ |GE|=\sqrt[]{116}=10.770 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qugradq54j8y1erz5jjpgeqdrxlvwdkwjy.png)
Step 2: If the sum of the square of two sides is equal to the square of the largest side, then we conclude that the triangle EFG is a right-angled triangle, otherwise, it is not a right-angled triangle.
That is,

Hence, the correct answer is triangle EFG is not a right-angled triangle.