We know that
• The vertex is (3,2).
,
• The x-intercept is at (1,0).
The vertex form of a parabola equation is-
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
Where h and k are the coordinates of the vertex.
We use the given information to find the parameter a,
![\begin{gathered} 0=a(1-3)^2+2 \\ -2=a(-2)^2 \\ -2=4a \\ a=-(2)/(4)=-(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fap0yu4uliqcy0tadokatyf4ekmwl980lh.png)
So, a is equal to -1/2.
We already have all the parameters to write the equation for the parabola in vertex form because h = 3, k = 2, and a = -1/2.
![y=-(1)/(2)(x-3)^2+2](https://img.qammunity.org/2023/formulas/mathematics/college/igu6gxt4k5s9oo5zuhq21t1iy5179m8ex7.png)