Given,
The equation is
![\begin{gathered} 5x+3y=1.............(1) \\ 3x+4y=-6............(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yq14hz3r1i2ywyttae5230mn4051ghe7cn.png)
To find: Identify the systems with no solution and systems with infinitely many solutions.
Solutions: We will use the substitution method. After moving 3y to the right, we get:
![\begin{gathered} 3y=1-5x \\ y=(1-5x)/(3) \\ y=(1)/(3)-(5x)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gio7bm2lkace56o7gti0m6bd1nzgw3p356.png)
Substitute this in the second equation.
![\begin{gathered} 3x+4y=-6 \\ 3x+4*((1)/(3)-(5x)/(3))=-6 \\ 3x+(4)/(3)-(20x)/(3)=-6 \\ (9x-20x)/(3)=-6-(4)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gzbmwti1gsbxyyo33m8qdm9vnsfq8ufux7.png)
Further solved as,
![\begin{gathered} (-11x)/(3)=(-18-4)/(3) \\ (-11x)/(3)=(-22)/(3) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yz9t7sj5b3q395pfl14srpbjxde804fnb7.png)
Put the value of x in equation (1)
![\begin{gathered} 5*2+3y=1 \\ 3y=1-10 \\ 3y=-9 \\ y=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o3nhnxnf13s5ks5xbgbap8zxbmq2d8h8ts.png)
Thus, the value of x and y is (2,-3)