104k views
2 votes
I need help on this can you help me please

I need help on this can you help me please-example-1

1 Answer

3 votes

Since it is a right triangle, we can use the trigonometric ratio sin(θ).


\sin (\theta)=\frac{\text{ Opposite side}}{\text{Hypotenuse}}

So, in this case, we have:


\begin{gathered} \theta=45\degree \\ \text{ Opposite side }=17 \\ \text{ Hypotenuse }=x \end{gathered}
\begin{gathered} \sin (\theta)=\frac{\text{ Opposite side}}{\text{Hypotenuse}} \\ \sin (45\degree)=(17)/(x) \end{gathered}

Now, we solve for x the above equation:


\begin{gathered} \text{Multiply by x from both sides} \\ \sin (45\degree)\cdot x=(17)/(x)\cdot x \\ x\sin (45\degree)=17 \\ \text{ Divide by }\sin (45\degree)\text{ from both sides} \\ (x\sin(45\degree))/(\sin(45\degree))=(17)/(\sin(45\degree)) \\ x=(17)/(\sin(45\degree)) \\ x=\frac{17}{\frac{1}{\sqrt[]{2}}} \\ x=\frac{(17)/(1)}{\frac{1}{\sqrt[]{2}}} \\ x=\frac{17\cdot\sqrt[]{2}}{1\cdot1} \\ x=\frac{17\sqrt[]{2}}{1} \\ $$\boldsymbol{x=17\sqrt[]{2}}$$ \end{gathered}

Therefore, the value of x is:


$$\boldsymbol{x=17\sqrt[]{2}}$$

I need help on this can you help me please-example-1
User NID
by
3.4k points