A series that has a finite sum is called convergent series. Otherwise, are divergent.
• Direct Comparison Test
Supposing that aₙ ≥ 0 and bₙ ≥ 0 for all values of n.
• Converges:, If aₙ ≤ bₙ for all values of n and
![\Sigma_(n=0)^(\infty)b_n](https://img.qammunity.org/2023/formulas/mathematics/college/j6ayc7ff1wyn6ugwe117grwy1zopfya697.png)
converges, then the series:
![\Sigma^(\infty)_(n=0)a_n](https://img.qammunity.org/2023/formulas/mathematics/college/qdv9v03qju4eruj3mph8mu7d6hf0zvoogr.png)
also converges.
• Diverges: ,If aₙ ≥ bₙ for all values of n and
![\Sigma^(\infty)_(n=0)b_n](https://img.qammunity.org/2023/formulas/mathematics/college/6gycl2kwokqey74osegn2epn3xssbq3f31.png)
diverges, then the series:
![\Sigma^(\infty)_(n=0)a_(n)](https://img.qammunity.org/2023/formulas/mathematics/college/z1cgomkai4lzsvme8gm2da2k6z4z74qgvp.png)
also diverges.
Our series:
![\Sigma_(n=0)^(\infty)(6+\sin(n))/(n^2)](https://img.qammunity.org/2023/formulas/mathematics/college/2ptu4cd6wozihmemxamfxlnahoa1jk75im.png)
Applying the comparison we can see that the series converges.
Answer: converge.