223k views
4 votes
If (y)sin(2y) = (x)cos(2x), then what is dy/dx at the point (pi/ 4, pi / 2)? -1/21/2-1/41/4

User Farrell
by
4.5k points

1 Answer

6 votes

Given equation is


(y)\sin (2y)=(x)(\cos (2x)

Differentiate with respect to x, we get


\text{ Using }(d(f(x)g(x)))/(dx)=f(x)(d(g(x))/(dx)+g(x)(df(x))/(dx)


(d(y))/(dx)\sin (2y)+y(d(\sin (2y)))/(dx)=(d(x))/(dx)\cos (2x)+x(d(\cos(2x)))/(dx)


(dy)/(dx)\sin (2y)+y\cos (2y)*2*(dy)/(dx)=\cos (2x)+x(-\sin (2x))*2


(dy)/(dx)(\sin (2y)+2y\cos (2y))=\cos (2x)-2x\sin (2x)
\text{ Substitute x=}(\pi)/(4)\text{ and y=}(\pi)/(2)\text{, we get}


(dy)/(dx)(\sin (2(\pi)/(2))+2(\pi)/(2)\cos (2(\pi)/(2)))=\cos (2(\pi)/(4))-2(\pi)/(4)\sin (2(\pi)/(4))


(dy)/(dx)(\sin (\pi)+\pi\cos (\pi))=\cos ((\pi)/(2))-(\pi)/(2)\sin ((\pi)/(2))


\text{ Use }\sin \pi=0,\cos \pi=-1,\cos ((\pi)/(2))=0,\text{ and }\sin ((\pi)/(2))=1\text{, we get}


(dy)/(dx)(0+\pi(-1))=0-(\pi)/(2)(1)


(dy)/(dx)(-\pi)=-(\pi)/(2)


(dy)/(dx)=-(\pi)/(2)*(1)/(-\pi)


(dy)/(dx)=(1)/(2)

Hence the answer is


(dy)/(dx)=(1)/(2)

User Joby Joseph
by
4.0k points