41.8k views
0 votes
Use the Law of Cosines to solve the triangle. Round your answers to two decimal places.

Use the Law of Cosines to solve the triangle. Round your answers to two decimal places-example-1
User Ulvi
by
3.7k points

1 Answer

7 votes

ANSWER:

A = 34.09°

B = 39.84°

C = 106.07°

Explanation:

The Law of Cosines in its general form has the following form:


a^2=b^2+c^2-2bc\cos A

We apply the law of cosines for each angle and then solve for each of them as follows:


\begin{gathered} a^(2)=b^(2)+c^(2)-2bc\cos(A) \\ \\ \cos(A)=(b^2+c^2-a^2)/(2bc) \\ \\ A=\cos^(-1)\:\left((b^2+c^2-a^2)/(2bc)\right) \\ \\ \text{ We replacing} \\ \\ A=\cos^(-1)\left((16^2+24^2-14^2)/(2\left(16\right)\left(24\right))\right)\: \\ \\ A=\cos^(-1)\left((53)/(64)\right)\:=34.09\degree \\ \\ \\ b^2=a^2+c^2-2ac\cos(B) \\ \\ \cos(B)=(a^2+c^2-b^2)/(2ac) \\ \\ B=\cos^(-1)\left((a^2+c^2-b^2)/(2ac)\right) \\ \\ \text{ We replacing} \\ \\ B=\cos^(-1)\left((14^2+24^2-16^2)/(2\left(14\right)\left(24\right))\right)\: \\ \\ B=\cos^(-1)\left((43)/(56)\right) \\ \\ B=39.84\degree \\ \\ \\ c^2=a^2+b^2-2ab\cos(C) \\ \\ \cos(C)=(a^2+b^2-c^2)/(2ab) \\ \\ C=\cos^(-1)\left((a^2+b^2-c^2)/(2ab)\right) \\ \\ \text{ We replacing:} \\ \\ C=\cos^(-1)\left((14^2+16^2-24^2)/(2\left(14\right)\left(16\right))\right)\: \\ \\ C=\cos^(-1)\left(-(31)/(112)\right) \\ \\ C=106.07\degree \end{gathered}

User Despertar
by
3.5k points