A triangle has 3 sides and 3 angles
Angles
B = 46 degrees (given)
C = 72 degrees
To find angle A
A + 46 + 72 = 180 (sum of angles in a triangle)
A + 118 = 180
A = 180 - 118
A=62
A = 62.0 degrees (to the nearest tenth)
Sides
a = 74 (given)
To find side b and c
We use sine rule
![\begin{gathered} (\sin A)/(a)=(\sin B)/(b) \\ (\sin62)/(74)=(\sin46)/(b) \\ \text{Cross multiplying, we have} \\ b\text{ x sin62 = 74 x sin 46} \\ b=\frac{74\text{ x 0.7193}}{0.883} \\ b=60.28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/913p5rmaxgw4svg2qrjgu15kgotthw1h34.png)
Therefore b = 60.3 (to the nearest tenth)
![\begin{gathered} (\sin C)/(c)=(\sin A)/(a) \\ (\sin 72)/(c)=(\sin 62)/(74) \\ \text{Cross multiplying we have,} \\ c\text{ x sin62 = 74 x sin72} \\ c=\frac{74\text{ x 0.9511}}{0.883} \\ c=79.71 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lq4feio0c158b94n4bf7e5abevtbifiw8b.png)
Therefore c = 79.7 (to the nearest tenth)