Given
![\begin{gathered} \text{When price is \$700, kayaks is 80, and} \\ \text{When price is \$400, kayaks is 175} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wadxw9lc9dko8779xd9su3ppo7lkg8z7ep.png)
If the price represents the dependent variable y and the number of kayaks represents the independent variable x, then we can represent the given information as
![\begin{gathered} y_1=700,x_1=80 \\ y_2=400,x_2=175 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x703nv1w8trq6a6zkrt9x2npnms1sanixd.png)
Assuming that the demand function is linear. Then we can determine the function using the general equation of a linear function formula with two different points.
The formula for finding the function of a linear function with two points is
![(y-y_1)/(x-x_1)=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/3wt52xf3n7hjhwt6qolt0l02t41489sre0.png)
Substituting the given points
![\begin{gathered} (y-700)/(x-80)=(400-700)/(175-80) \\ (y-700)/(x-80)=(-300)/(95) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uftl622m9fyf5u336yq63qke9f4rqla518.png)
![\begin{gathered} (y-700)/(x-80)=(-60)/(19) \\ \text{cross}-\text{multiyiply} \\ 19(y-700)=-60(x-80) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9c0u6mlo6ztzeghwepaxcfzqkglj3zkotc.png)
![\begin{gathered} 19y-13300=-60x+4800 \\ 19y=-60x+4800+13300 \\ 19y=-60x+18100 \\ y=-(60)/(19)x+(18100)/(19) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y3xmw9lnwwq0wm33451rdgg3wbqjklw64b.png)
When y is 600, x would be
![\begin{gathered} 600=-(60)/(19)x+(18100)/(19) \\ \text{mltiply through by 19} \\ 19*600=-60x+18100 \\ 11400=-60x+18100 \\ 11400+60x=18100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/74mrl0s3iqnpactkvcrwvqewu8ysov330t.png)
![\begin{gathered} 60x=18100-11400 \\ 60x=6700 \\ x=(6700)/(60) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ilotze2wrs07fhpavx8oukz5f015wouvrq.png)
![\begin{gathered} x=111.67 \\ x\approx112 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j936kl5pzpiwq3r4z464o0j5g36f5ksr5h.png)
Answer Summary
(a) The demand function is y= -60/19x +18100/19, or 19y=-60x+18100
(b) The demand for $600 is approximately 112 kayaks