Answer:
Let the number of professors be represented with the letter P
![n(P)=7](https://img.qammunity.org/2023/formulas/mathematics/college/tfxnkennyomwlj67ezo3exwxnvqhrmb9vt.png)
Let the number of associate professors be represented by the letter A
![n(A)=8](https://img.qammunity.org/2023/formulas/mathematics/college/gtusgo872rd0w89v6ctsalhaucl53bo8ni.png)
Let the number of assistant professors be represented by the letter S
![n(S)=6](https://img.qammunity.org/2023/formulas/mathematics/college/l0ahxeiwa2tasbzib8tmh1gr5em0elbc4r.png)
Let the number of instructors be represented by the letter I
![n(I)=4](https://img.qammunity.org/2023/formulas/mathematics/college/o0rv39za6bnl4j7l0rqq8gcub74l60sdaj.png)
The total number of sample space will be calculated below as
![\begin{gathered} n(T)=n(P)+n(A)+n(S)+n(I) \\ n(T)=7+8+6+4 \\ n(T)=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qrwfnwjsc7wv57p74rizguglr60ghsnepx.png)
To figure out the probability of choosing a professor or an instructor, we will use the formula below
![Pr(PorI)=Pr(P)+Pr(I)](https://img.qammunity.org/2023/formulas/mathematics/college/jzlj6dv21ogb105l9h53kaaxc5typcjzv3.png)
![Pr(P)=(n(P))/(n(T))=(7)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/9bz4o2achk8wkr9wdrhelf35idz40r5xv6.png)
![Pr(I)=(n(I))/(n(T))=(4)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/9onpkovqx65rp4557p5ousjrqkv4ymew9i.png)
By substituting the values, we will have
![\begin{gathered} Pr(PorI)=Pr(P)+Pr(I) \\ Pr(PorI)=(7)/(25)+(4)/(25) \\ Pr(PorI)=(11)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/83i1e2fakb8yw2tqs95v60swdxf9l5dqdr.png)
Hence,
The final answer is
![\Rightarrow(11)/(25)](https://img.qammunity.org/2023/formulas/mathematics/college/o30zotn4r07bnq4a5mv0mft0ytz005k2l3.png)