The fair price to play the game is $23.61
Step-by-step explanation:
Number of singles = 5
number of fives = 8
Number of twenties = 4
number of $300 = 1
Total number = 5 + 8 + 4 + 1 = 18
fraction for each:
5/18 chance of getting singles
8/18 chance of getting fives
4/18 chance of getting twenties
1/18 chance of getting $300
We find the Expected values:
![\begin{gathered} \text{singles = 1} \\ \text{Expected }value\text{ = (}(5)/(18)\text{ }*1)\text{ +(}\frac{\text{ 8}}{18}*\text{ 5)+ (}\frac{\text{4}}{18}*20)\text{ + (}\frac{\text{1}}{18}*300) \\ \text{Expected }value\text{ =}(1)/(18)\text{ \lbrack(}5\text{ }*1)\text{ +(}8*\text{ 5)+ (}4*20)\text{ + (}1*300)\rbrack \\ \text{Expected value =}(1)/(18)\text{(}5\text{ + 40 + 80 + 300)}_{} \\ \\ \text{fair price = }\frac{Total\text{ money in the hat}}{total\text{ number of bills}} \\ \text{fair price = }(1)/(18)\text{(}5\text{ + 40 + 80 + 300)}_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ij5irnq07e3mlimkz4zunl4afxa17no13.png)
![\begin{gathered} \text{fair price = }(1)/(18)\text{(}425\text{)}_{} \\ \text{fair price = \$23.61} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7r7kgbr0i9zfdm5lspedamwu7wh0gjj7k.png)
In the absence of further information, fair price is $23.61