Recall that the discriminant of a quadratic equation:
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
is:
![\Delta=b^2-4ac\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/nykubdh5fzdh63ouka4gg295eib929sr81.png)
We know that:
1) If Δ=0 then the quadratic equation has one double root.
2) If Δ>0 then the quadratic equation has two different real roots.
3) If Δ<0 then the quadratic equation has two different nonreal roots.
Now, we can rewrite the given equation as follows:
![5y^2-18y+4=0.](https://img.qammunity.org/2023/formulas/mathematics/college/u2h2t0eslwsmh8nctvp05h0cfyf97hh58q.png)
The discriminant of the above equation is:
![\Delta=(-18)^2-4(5)(4)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/4vxvus51m3hapky59wlxueh2jttqux0g8x.png)
Simplifying the above result we get:
![\begin{gathered} \Delta=324-80 \\ =244. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dpxs5gwolmm7w8hvt2ip4ctxxm6op72jdp.png)
Since:
![\Delta>0.](https://img.qammunity.org/2023/formulas/mathematics/college/ul5pqmveqx1k5hlmsd9lfdxxt82b9gs3t4.png)
Then the given equation has two different real solutions.
Finally, notice that:
![\sqrt[]{244}=2\sqrt[]{61}](https://img.qammunity.org/2023/formulas/mathematics/college/1awviiz8g64bbq3m0jbrc6rwntln553a7n.png)
Therefore the solutions are both irrational.
Answer: Last option.