34.0k views
1 vote
Given RS||TU, RS=4, RQ=x+3, QT= 2x + 10, Find RQ and QT

Given RS||TU, RS=4, RQ=x+3, QT= 2x + 10, Find RQ and QT-example-1
User Gopichand
by
5.5k points

1 Answer

1 vote

Given that


RS\parallel TU

Given data


\begin{gathered} RS=4 \\ RQ=x+3 \\ QT=2x+10 \\ UT=10 \end{gathered}

Using the method of similar ratios


(RS)/(RQ)=(UT)/(QT)

Therefore,


(4)/(x+3)=(10)/(2x+10)

Cross-multiply


\begin{gathered} 4(2x+10)=10(x+3) \\ 8x+40=10x+30 \end{gathered}

Collect like terms


\begin{gathered} 40-30=10x-8x \\ 10=2x \end{gathered}

Divide both sides by 2


\begin{gathered} (10)/(2)=(2x)/(2) \\ 5=x \\ \Rightarrow x=5 \end{gathered}

Let us now solve for RQ and QT


\begin{gathered} \text{RQ}=x+3=5+3=8 \\ QT=2x+10=2(5)+10=10+10=20 \end{gathered}

Hence,


\begin{gathered} RQ=8\text{units} \\ QT=20\text{units} \end{gathered}

User James Burns
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.