we have the function
![f\left(x\right)=2^(x)\cos x](https://img.qammunity.org/2023/formulas/mathematics/high-school/u380tsyun8qjddmietln6aichslz53hv7n.png)
Find out the critical points
so
Find out the first derivative
![f^(\prime)(x)=ln2*2^xcosx-2^xsinx](https://img.qammunity.org/2023/formulas/mathematics/high-school/iihqjxk7g3c7shj1d5u94mqvtl1s1uoue9.png)
Equate the first derivative to zero
![\begin{gathered} ln2*2^xcosx-2^xsinx=0 \\ ln2=(2^xsinx)/(2^xcosx) \\ \\ ln2=tanx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4fpvy5m3l41l9xmjjjearz2foh4ciyvm4q.png)
the value of the tangent is positive
that means
the angle x lies on the I quadrant or III quadrant
but remember that the interval is [0, pi]
therefore
The angle x lies on the quadrant
![\begin{gathered} tanx=ln2 \\ x=0.2\pi\text{ radians} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/f8qlipbxvf6snd20hitbkpiy8gek3y9kd9.png)
The critical point is x=0.2pi radians
Find out the second derivative
![f^(\prime)^(\prime)(x)=ln^22*2^xcosx-ln2*2^(x+1)*sinx-2^xcosx](https://img.qammunity.org/2023/formulas/mathematics/high-school/xwvpl163lzs9mj6abr67rhzkoe2mppz6v1.png)
Evaluate the second derivative at x=0.2pi radians
The value of the second derivative is negative
so
The concavity is down
that means
The critical point is a local maximum in the given interval