Answer:
As the values of the domain increase, the values of the function also increase.
Step-by-step explanation:
Given the below function;
![y=1.5^x](https://img.qammunity.org/2023/formulas/mathematics/college/hkxtnxp7qf1b2memehd64482ff4k7fkufu.png)
Let's go ahead and evaluate the above function over the domain {-1, 0, 1, 2} as shown below;
When x = -1;
![\begin{gathered} y=1.5^(-1)=(1)/(1.5) \\ y=0.67 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/daiblfps3v5wra9j1mbsz6f03373rgp4a3.png)
When x = 0;
![\begin{gathered} y=1.5^0 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pjzcxtfaztnefwsjvjas7kecssf3kwed5e.png)
When x = 1;
![\begin{gathered} y=1.5^1 \\ y=1.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhzuw8jewubozt5io16z7g6p5wxb3b2v42.png)
When x = 2;
![\begin{gathered} y=1.5^2 \\ y=2.25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pcfmoeaoyfh8u3zm17lseq0bgz7va94t4o.png)
We can see that as the values of the domain increase, the values of the function also increases.