Let the radius be r and the time be t.
As per condition, r is proportional to t.
![r=kt](https://img.qammunity.org/2023/formulas/mathematics/college/bjrz8q12ow1kws39zmoyxarpm3022oalg4.png)
Now it is given that for r=0.5, t=10, so it follows:
![\begin{gathered} 0.5=k(10) \\ k=0.05 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/499ni3mzuupii1akaa8oobrwc52uc49uuy.png)
So the equation becomes:
![r=0.05t](https://img.qammunity.org/2023/formulas/mathematics/college/dwzqxhk2irxo8fdse5r1lk21uk8y7bs688.png)
Here r is in inches and t is in seconds.
For r=1.25, the value of t is:
![\begin{gathered} 1.25=0.05t \\ t=(1.25)/(0.05) \\ t=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h8qs9yvcgu8ovgwp50x90bnssxajnalmou.png)
So the value of t is 25 seconds.