According to the graph, angles 7 and 3 are corresponding angles, which means they are equal.
![m\angle7=m\angle3](https://img.qammunity.org/2023/formulas/mathematics/college/rinn7nz3t72cf6ctc6i9u64epmivt1joca.png)
Replacing the given expressions, we have
![3x-10=2x+5](https://img.qammunity.org/2023/formulas/mathematics/college/7phy1kkb2roc7cs2j1jqvh35jaw59119po.png)
Now, we solve for x
![\begin{gathered} 3x-2x=10+5 \\ x=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ka3ntibkeyh6wa009e1kino1gsxw20jtms.png)
Then, we use this value to find angle 7.
![m\angle7=3x-10=3\cdot15-10=45-10=35](https://img.qammunity.org/2023/formulas/mathematics/college/t987qnr4onyohae31je9zpplkf9id11o5o.png)
The diagram shows that angle 7 is equal to angle 1 because they are alternate exterior angles.
Hence, angle 1 measures 35°. The right answer is C.