Answer:
![z_1=6\sqrt[]{3}\lbrack\cos (-(\pi)/(3))+i\sin (-(\pi)/(3))\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/2eiibre5ujq3fkw0oigcej7gpozk7abaup.png)
Step-by-step explanation:
The rectangular form of a complex number is generally given as;

where;
![\begin{gathered} a=r\cos \theta \\ b=r\sin \theta \\ r=|z|=\sqrt[]{a^2+b^2} \\ \theta=\tan ^(-1)((b)/(a))\text{ for a > 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kxtjfg610lepytok75xfk4760xp47ltq1v.png)
Converting rectangular form to polar form, we'll have;

Given the below;
![z_1=3\sqrt[]{3}-9i](https://img.qammunity.org/2023/formulas/mathematics/college/gpqhlrwczncr2sl7u9fgcapsvw2s5ump09.png)
We can see that;
![\begin{gathered} a=3\sqrt[]{3} \\ b=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7uz39pze3trrgqr1grucuxr83ndn71l84m.png)
Let's go ahead and find r as shown below;
![\begin{gathered} r=\sqrt[]{(3\sqrt[]{3})^2+(-9)^2}=\sqrt[]{(9*3)^{}+81}=\sqrt[]{27+81}=\sqrt[]{108} \\ r=\sqrt[]{36*3}=\sqrt[]{36}*\sqrt[]{3} \\ r=6\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y4e75tmqtya1owdvm8duv091uitk4u1rpm.png)
Let's now find theta,;
![\begin{gathered} \theta=\tan ^(-1)(\frac{-9}{3\sqrt[]{3}})=-(\pi)/(3) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kh0b7ckx9oipvt4lbn9qihtnc7l54s0u7l.png)
If we go ahead and input the above values into our polar form equation, we'll have;
![z_1=6\sqrt[]{3}\lbrack\cos (-(\pi)/(3))+i\sin (-(\pi)/(3))\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/2eiibre5ujq3fkw0oigcej7gpozk7abaup.png)