Given:
The objective is to find the probability of getting a total of 2 in tossing a pair of dice.
Since each dice contain 6 sides. So the sample space in rolling two dices is,
![\begin{gathered} \text{n(S)=6}*6 \\ n(S)\text{=3}6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ah7bt5ci0zprvjd4u55hfe0vbzxftw6b1c.png)
The sample space of getting sum of 2 is,
![\text{Sum of 2=}\lbrace(1,1)\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/a5i4c7jve2yx0qqvo4hv7rx5btaqde86ic.png)
Thus, the number of sample space of getting a sum of 2 is one.
Then, the probability of getting a sum of 2 in rolling a pair of dice is,
![\begin{gathered} P(sum\text{ of 2)=}\frac{n(sum\text{ of 2)}}{n(S)} \\ P(sum\text{ of 2)=}(1)/(36) \\ P(sum\text{ of 2)=}0.0278 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gsoxoqa01031xwo774a0cwt0gze4nw7eyt.png)
Hence, option (A) is the correct answer.