Given the equation:
![\frac{\sin^2x+\text{cos}^2x}{\cos x}=\sec x](https://img.qammunity.org/2023/formulas/mathematics/college/6ji5e7f3xcv3m9vn6ljom20szjdp9tm37t.png)
Let's determine the trigonometric identity that you could be used to verify the exquation.
Let's determine the identity:
Apply the trigonometric identity:
![\sin ^2x+\cos ^2x=1](https://img.qammunity.org/2023/formulas/mathematics/college/gw04atounvovsby34zfkmys91isvazr08f.png)
![\cos x=(1)/(\sec x)](https://img.qammunity.org/2023/formulas/mathematics/college/c0am3z23bg373r8ktp0tftl99pudpgbfmi.png)
Replace cosx for 1/secx
Thus, we have:
![\begin{gathered} (\sin^2x+\cos^2x)/((1)/(\sec x)) \\ \\ =(\sin ^2x+\cos ^2x)(\sec x) \\ \text{Where:} \\ (\sin ^2x+\cos ^2x)=1 \\ \\ We\text{ have:} \\ (\sin ^2x+\cos ^2x)(\sec x)=1\sec x=\sec x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bnk4po985zjyf8zcz3dxjo7a96usx810hi.png)
The equation is an identity.
Therefore, the trignonometric identity you would use to verify the equation is:
![\cos ^2x+\sin ^2x=1](https://img.qammunity.org/2023/formulas/mathematics/college/bkbuh04anlt02sqnvd0rmh0100ln008124.png)
ANSWER:
![\cos ^2x+\sin ^2x=1](https://img.qammunity.org/2023/formulas/mathematics/college/bkbuh04anlt02sqnvd0rmh0100ln008124.png)