The height attained by the arrow is modelled as,
![h(t)=-16t^2-v_(\circ)t+h_(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/wr7bkg3zq517dt7cyqyhbdk7vyxdilkop9.png)
Given that the initial height is 20 ft and the initial velocity is 179 ft per second,
![\begin{gathered} v_(\circ)=179 \\ h_(\circ)=20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z4b75eg7crlsk0xuddk9se94jqvisdfwwp.png)
Substitute the values,
![\begin{gathered} h(t)=-16t^2-(179)t+(20) \\ h(t)=-16t^2-179t+20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wy03osj4kgw4edx48tku9yrdxy7vmz2kfe.png)
When the arrow hits the ground its height will become zero,
![\begin{gathered} h(t)=0 \\ -16t^2-179t+20=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n8hylglpavhzqn33b60o0vluxfc41r47ki.png)
Applying the quadratic formula,
![\begin{gathered} t=\frac{-(-179)\pm\sqrt[]{(-179)^2-4(-16)(20)}}{2(-16)} \\ t=\frac{179\pm\sqrt[]{33321}}{-32} \\ t=(179\pm182.54)/(-32) \\ t=(179+182.54)/(-32),t=(179-182.54)/(-32) \\ t=-11.298,t=0.1106 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xibaouhjmk8pbvlgm9izfis73zm1e2bz6z.png)
Since time cannot be negative, we have to neglect the negative value.
Thus, it can be concluded that the arrow will hit the ground after 0.1106 seconds approximately.