32.2k views
3 votes
Solve the following. List all possible possible solutions for the ambiguous case. #7

Solve the following. List all possible possible solutions for the ambiguous case. #7-example-1
User Namit
by
3.6k points

1 Answer

2 votes

The sum of the interior angles of any triangle is always 180º:


A+B+C=180

Use the equation above and the given data to find C:


\begin{gathered} C=180º-A-B \\ C=180º-38º-72º \\ C=70º \end{gathered}

Law of sines:


(a)/(sinA)=(b)/(sinB)=(c)/(sinC)

Use the pair of ratios for a and b to solve a:


\begin{gathered} (a)/(sinA)=(b)/(sinB) \\ \\ a=sinA*(b)/(sinB) \\ \\ a=sin38º*(12)/(sin72º) \\ \\ a=7.8 \end{gathered}

Use the pair of ratios for b and c to solve c:


\begin{gathered} (c)/(sinC)=(b)/(sinB) \\ \\ c=sinC*(b)/(sinB) \\ \\ c=sin70º*(12)/(sin72º) \\ \\ c=11.9 \end{gathered}Thenm, the solution for the given triangle is:A=38ºB=72ºC=70ºa=7.8b=12c=11.9
Solve the following. List all possible possible solutions for the ambiguous case. #7-example-1
User Dan Prince
by
4.0k points