Given the points
![\begin{gathered} (x_1,y_1)=(2010,17) \\ \text{and} \\ (x_2,y_2)=(2008,0.3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8v9svjf8r6rbw8o8pqo1jvr3hcmuspvhxn.png)
we will find the slope m and the y-intercept b.
The slope m is given as
![\begin{gathered} m=(y_2-y_1)/(x_2-x_1) \\ \text{that is,} \\ m=(0.3-17)/(2008-2010) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/282nh0uyuj1v7g60u1b5b47v9d36nkboqm.png)
which gives
![\begin{gathered} m=(-16.7)/(-2) \\ m=8.35 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10g9x2ixywv7pyyo97pr96f0zs0irffa6i.png)
Then, the line equation in slope-intercept form is
![y=8.35x+b](https://img.qammunity.org/2023/formulas/mathematics/college/sxmv3peb4gl0xxtzgbsez379vntrabnopl.png)
In order to find the y-intercept b, we can substitute one of the given point, for instance, by replacing point (2010,17) in the last result, we have
![17=8.35(2010)+b](https://img.qammunity.org/2023/formulas/mathematics/college/6udaixdc4ymgcmvjnp0mnuwd1weih62zb9.png)
which gives
![\begin{gathered} 17=16783.5+b \\ \text{then} \\ b=17-16783.5 \\ b=-16766.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/odm2hzk9tq3bxq41y1qjyy1htghgdff8qx.png)
Then, the answer is
![y=8.35x-16766.5](https://img.qammunity.org/2023/formulas/mathematics/college/gqcggocyxfbn180k2wtukkiiba2qfun86m.png)