Given
z varies directly as x². If z = 18 when x = 3.
To find z, when x = 4.
Step-by-step explanation:
It is given that,
z varies directly as x².
That implies,
![z=kx^2\text{ \_\_\_\_\_\_\lparen1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/high-school/iuff0e2aokv5b0ub0lvnqwq54txd81yjl4.png)
Since z=18, when x=3.
Then,
![\begin{gathered} 18=k(3)^2 \\ 9k=18 \\ k=(18)/(9) \\ k=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/665egyp49yiu9qzkrhu8fer3iju5wr0w38.png)
Therefore, (1) becomes,
![z=2x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/lndnw7twgl0lkkz68vwe13r789dca7ailh.png)
Also, for x=4,
![\begin{gathered} z=2(4)^2 \\ z=2(16) \\ z=32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/za8g51lranz945rahzqr6oieopaq9mkvfa.png)
Hence, the value of z is 32 when x=4.