For this problem we are given the height of a cone, and the diamater of its base. From this information, we need to determine the volume of the cone.
The volume of a cone is given by the following formula:
![V=\pi\cdot r^2(h)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/n1q8qzgwhcaz2gvyw8mthl6tsf1ny8065u.png)
The radius of the base is half the diameter, so we can determine the radius from the given information, as shown below:
![\begin{gathered} r=(d)/(2) \\ r=(6)/(2)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/10s58nfsefd0nrye62kw3cx66b2w5deiy1.png)
We can now use the formula for the volume.
![\begin{gathered} V=\pi\cdot(3)^2\cdot(12)/(3) \\ V=\pi\cdot9\cdot4 \\ V=113.04\text{ cubic inches} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7cpvdstiy743y4qbaes2d7h7nkyhkc1vf.png)
The volume