Notice that
![\begin{gathered} z=-4\sqrt[]{3}+4i=8(-\frac{\sqrt[]{3}}{2}+(1)/(2)i) \\ \Rightarrow z=8(-\frac{\sqrt[]{3}}{2}+(1)/(2)i) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yl2mloi9bi1o1ki48ak2q4hn2w05cjowdk.png)
Set,
![\begin{gathered} z=8(\cos x+i\sin x) \\ \Rightarrow8(\cos x+i\sin x)=8(-\frac{\sqrt[]{3}}{2}+(1)/(2)i) \\ \Rightarrow\cos x=-\frac{\sqrt[]{3}}{2},\sin x=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bo4aybbkqf3cgs8mcrq79mlshiy7ppi5ms.png)
Then, angle x is in the second quadrant since cosx is negative and sinx is positive-
On the other hand,
Therefore, using the unitary circle,
Therefore, the angle that produces such values for the cosine and sine function is x=150°; thus,
![\begin{gathered} x=150\degree \\ \Rightarrow z=8(-\frac{\sqrt[]{3}}{2}+(1)/(2)i)=8(\cos (150\degree+i\sin (150\degree))) \\ \Rightarrow z=8(\cos (150\degree+i\sin (150\degree))) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2quf8lmyhx93wt4gjhuv79b2mrtigv1miu.png)
The answer is option 4 (top to bottom)