The volume of a hemisphere can be calculated usint the formula shown below:

Where "r" is the radius of the hemisphere.
According to the information given in the exercise, the jungle gym is a hemisphere and its volume is:

Then, you can substitute this value into the formula and solve for the radius "r":
![\begin{gathered} V=(2)/(3)\pi r^3 \\ \\ 4,000\pi\text{ }ft^3=(2)/(3)\pi r^3 \\ \\ \frac{(3)(4,000\pi\text{ }ft^(3))}{2\pi}=r^3 \\ \\ r=\sqrt[3]{\frac{(3)(4,000\pi\text{ }ft^(3))}{2\pi}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bwpibkmlnd2x6qfscq37i9ra7gvuiaw7lt.png)
Evaluating, you get:
![r=10\sqrt[3]{6}\text{ }ft](https://img.qammunity.org/2023/formulas/mathematics/college/eddkpbm8jbvena2qnjpcihoo4qjs78d8jr.png)
By definition, the diameter is twice the radius, therefore, this is:
![\begin{gathered} d=(2)(10\sqrt[3]{6}\text{ }ft) \\ d=20\sqrt[3]{6}\text{ }ft \\ d\approx36.34\text{ }ft \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yn22xuz8bu4zkiqw3eavmy5jaw6rlz1eus.png)
The answer is:
