Solution
Step 1
Write the expression for the surface area of a hemisphere
![\text{Surface area of a hemisphere (A}_1)=\text{ 2}*\pi* r^2](https://img.qammunity.org/2023/formulas/mathematics/college/r53ywkdlxhuyc8o1xyw4qias7i1pjvuy7e.png)
Where
π = 3.14
r= 4.5 inches
Step 2
Write the expression for the surface area of a cone
![\begin{gathered} \text{Surface area of a cone (A}_2)\text{ = }\pi* r* l \\ l\text{ = slant height } \\ To\text{ find l we use Pythagoras theorem} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7gne1c4chsoiah0dfd1r4c7o5251uuy5t1.png)
Step 3
Draw the triangle and find l using Pythagoras theorem
From the diagram
l²= 4.5²+10²
l =√(100 + 20.25)
l= √120.25
l = 10.97 inches
Step 4
Find the area of the hemisphere and cone by substitution and calculation
![\begin{gathered} A_{1\text{ }}=2*3.14*4.5^2 \\ A_1=127.17in^2 \\ A_2=\text{ 3.14 }*\text{ 4.5 }*\text{ 10.97} \\ A_2=155.0061in^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ru2bco2ghkcjjjc8ux3x76j151b406m1mf.png)
Step 5
Find the total surface area of the shape
![\text{The total surface area of the shape = A}_1+A_2=127.17+155.0061=282.18in^2\text{ approxi}mately](https://img.qammunity.org/2023/formulas/mathematics/college/bqfr2div1prgvia2hpf43fqngxh2ufe417.png)
Hence the total area of the shape = 282.2 in²
Option F is the right answer